Count m
Minimum Value 21.00
Maximum Value 96.00
Range 75.00
Average 72.33
Median 79.50
Standard Deviation 13.43
Variance 180.30
PAC Learning SVM Kernels+Boost Decision Trees
Cout Court (151 Count 151 Court [151]
Minimum Valug 300 Minimum Value 250 M Voke 5 Minimum Valug 500
Maximum Valug 25.00 Mazximum Valug 25.00 laximum Value 2300 Maximum Valug 24.00
Range 200 Range 2250 Range A0 Range 19,00
Average 1974 Average 16:65 Average 1he Average 18.13
Median 2100 Median 1800 edian 1750 Median 18,50
Standard Deviation 490 Standard Deviation 5% Standard Deviation 363 Standard Deviation 407
Variance 24,04 Variance 35.07 Variance 1319 Variance 16,54
MultiClass CS446 Spring '17 1




Grades
are on a

curve

Will be
available
at the TA
sessions
this week

Projects
feedback
has been
sent.
Recall
that this
is 25% of
your
grade!

Undergrad Midterm

Probability
=
=
r
=

100

MultiClass

Midterm Lewvel = 0
B8.
0.
13.
22.
gl.

count
mean
std
min
25%
hO%
5%
max

74
80

. 000000
.250000
892.

000000
539773
822400
000000
375000

000000

0035

0.030

0.025

Probalbility
=] (=}
(== ©
— [
[ (=]

0.010

0.005

0.000

Grad Midterm

Midterm Lewvel
150.
12.
13.
22.
63.
5.
B,
96,

count
mean
std
min
25%
50%
15%
max

= ALL
000000
173333
442643
000000
750000
000000
000000
000000

Midterm Level = G

count
mean
std
min
25%
50%
15%
max

6.
74.
12.
37.
68.
715.
B3.
96.

000000
491935
632735
500000
125000
150000
000000
000000




MultiClass

m So far we focused on Binary Classification

m For linear models:
2 Perceptron, Winnow, SVM, GD, SGD

m The prediction is simple:
2 Given an example x,
2 Prediction = sgn(w'x)
2 Where w is the learned model

m The output is a single bit

CS446 Spring "17



mmm) = Multi-class Classification (y < {1,...,K})

2 character recognition (‘6’)

2 document classification (‘homepage’)

» Multi-label Classification (y < {1,...,K})
2 document classification (‘(homepage,facultypage)’)

m Category Ranking (y € m(K))
2 user preference (‘(love > like > hate)’)
0 document classification (‘hompage > facultypage > sports’)

m Hierarchical Classification (y < {1,..,K})

2 cohere with class hierarchy

2 place document into index where ‘soccer’ is-a ‘sport’

MultiClass CS446 Spring '17 4



W Learning:
O Given a dataset D ={(x, y;)};™
0 Wherex, € R", y. € {1,2,...,k}.
m Prediction (inference):
2 Given an example x, and a learned function (model),

2 Output a single class labels y.

MultiClass CS446 Spring "17 5



MultiClass

Most schemes for multiclass classification work by
reducing the problem to that of binary classification.

There are multiple ways to decompose the multiclass
prediction into multiple binary decisions
2 One-vs-all

2 All-vs-all
2 Error correcting codes

We will then talk about a more general scheme:

0 Constraint Classification

It can be used to model other non-binary classification
schemes and leads to Structured Prediction.

CS446 Spring "17 6



MultiClass

Assumption: Each class can be separated from all the
rest using a binary classifier in the hypothesis space.

m Learning: Decomposed to learning k independent
binary classifiers, one for each class label.
W Learning:
2 Let D be the set of training examples.

0 Vlabel |, construct a binary classification problem as follows:
= Positive examples: Elements of D with label |
* Negative examples: All other elements of D

2 This is a binary learning problem that we can solve, producing
k binary classifiers w,, w,, ...w,

m Decision: Winner Takes All (WTA):
a f(x) = argmax, w,'x

CS446 Spring "17 7



= MultiClass classifier °
"1 Function f:R"—>{1,2,3,...,k} ®

m Decompose into binary problems

m No theoretical justification
"1 Need to make sure the range of all classifiers is the same

w (unless the problem is easy)
MultiClass CS446 Spring’17 8



= Findv,v,v WV, € R such that
Tv.x>0 iffy=red X
1 vpx>0 iffy =blue v
vgx>0  iffy=green \
Cvx>0  iffy=yellow \

= Classificationf(x)=argmaxv; X

MultiClass CS446 Spring’17
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MultiClass

Assumption: There is a separation between every pair of classes
using a binary classifier in the hypothesis space.

Learning: Decomposed to learning [k choose 2] ~ k?
independent binary classifiers, one corresponding to each pair
of class labels. For the pair (i, j):

0 Positive example: all exampels with label i

0 Negative examples: all examples with label j

Decision: More involved, since output of binary classifier may
not cohere. Each label gets k-1 votes.

Decision Options:

0 Majority: classify example x to take label i if i wins on x more often
thanj (j=1,...k)

0 A tournament: start with n/2 pairs; continue with winners .

CS446 Spring "17 10



It is possible to
separate all k
classes with the
O(k?) classifiers

® Find Vi, ViV, Vg Vi Vg, € RE such that

gy

Vx>0 ify=red
<0 ify=blue
Vx>0 ify=red
<0 ify=green
"1 ... (for all pairs)

H = Rkkn

Individual
Classifiers

Decision

Regions
CS446 Spring’17

MultiClass



Tournament Majority Vote

1 red, 2 yellow, 2 green
- ?

All are postlearning andnightcause weird stuff

MultiClass CS446 Spring’17 12



MultiClass

Assume m examples, k class labels.

2 For simplicity, say, m/k in each.
One vs. All:
O classifier f: m/k (+) and (k-1)m/k (-)
-1 Decision:
0 Evaluate k linear classifiers and do Winner Takes All (WTA):
a f(x) = argmax. f,(x) = argmax; w,'x
All vs. All:
a Classifier f: m/k (+) and m/k (-)
1 More expressivity, but less examples to learn from.
—1 Decision:
0 Evaluate k2 linear classifiers; decision sometimes unstable.

What type of learning methods would prefer All vs. All
(efficiency-wise)?

(Think about Dual/Primal)

CS446 Spring’17 13



m  1-vs-all uses k classifiers for k labels; can you use only log, k?

m Reduce the multi-class classification to random binary problems.
1 Choose a “code word” for each label.
o K=8: all we need is 3 bits, three classifiers

m  Rows: An encoding of each class (k rows)

m Columns: L dichotomies of the data, each corresponds to a new classification

problem Label [P1 [P2 [P3 [P4
m  Extreme cases:

0 1-vs-all: k rows, k columns 1 - + |- +

2 krows log, k columns
m  Each training example is mapped to one example per cquEn 2 - -+ + -

2 (x,3) 2 {(x,P1), +; (x,P2), -; (x,P3), -; (x,P4), +}

3 - -
m  To classify a new example x:
21 Evaluate hypothesis on the 4 binary problems 4 + - +
{(x,P1), (x,P2), (x,P3), (x,P4),}
-1 Choose label that is most consistent with the results. K - + - -

= Use Hamming distance (bit-wise distance)
Nice theoretical results as a function of the performance of the P, s (depending on code & size)
Potential Problems?

Can you separate any dichotomy?

MultiClass CS446 Spring '17 14




MultiClass

Learning optimizes over localmetrics
-1 Does not guarantee good globalperformance
2 We don’t care about the performance of the localclassifiers

Poor decomposition = poor performance
~1 Difficult local problems
21 lrrelevant local problems

Especially true for Error Correcting Output Codes
1 Another (class of) decomposition
=1 Difficulty: how to make sure that the resulting problems are separable.

Efficiency: e.g., All vs. All vs. One vs. All
Former has advantage when working with the dual space.

Not clear how to generalize multi-class to problems with a very large # of
output variables.

CS446 Spring "17 15



m klabel nodes; n input features, nk weights.

m Evaluation: Winner Take All
m Training: Each set of n weights, corresponding to the i-th label, is trained

1 Independently, given its performance on example x, and
1 Independently of the performance of label j on x.

m Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)).

m However, this architecture allows multiple learning algorithms; e.g., see the
implementation in the SNoW/LbJava Multi-class Classifier
Targets (each an LTU) 3% I Sed

Weighted edges
(weight vectors)

., Features © O
MultiClass CS446 Spring’17 21



y¢Positive 3¢ Negative
Winnow learns monotone Boolean functions w

We extended to general Boolean functions via

“Balanced Winnow”
1 2 weights per variable;
-1 Decision: using the “effective weight”,

the difference between w* and w-
-1 This is equivalent to the Winner take all decision

1 Learning: In principle, it is possible to use the 1-vs-all rule and update each set
of n weights separately, but we suggested the “balanced” Update rule that
takes into account how both sets of n weights predict on example x

If [(W—wW)ex>d]=y, W «wT"™ W «wr”” .
o

Can this be generalized to the

case of k labels, k >27? We need a “global

learning approach

MultiClass CS446 Spring '17



MultiClass

w Ina 1-vs-all training you have a target node that represents
positive examples and target node that represents negative
examples.

m Typically, we train each node separately (mine/not-mine
example).

m Rather, given an example we could say: this is more a + example
than a — example.

If (W —w)ex>dl=y, W «wTr’™, w «wr’™"

m  We compared the activation of the different target nodes
(classifiers) on a given example. (This example is more class +
than class -)

m Can this be generalized to the case of k labels, k >27?
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» Introduction

m Combining binary classifiers
2 One-vs-all
2 All-vs-all

2 Error correcting codes

B Training a single (global) classifier
O Multiclass SVM

0 Constraint classification

MultiClass CS446 Spring '17 24



The margin of a hyperplane for a dataset is the
distance between the hyperplane and the data point
nearest to it.

iy

++
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MultiClass

Defined as the score difference between the highest

scoring label and the second one

Multiclass Margin

M Blue

Score for B Red
a label
=W 0 X “ Green
M Black

Labels

CS446 Spring "17 26



m Recall: Binary SVM

2 Maximize margin

2 Equivalently,

Minimize norm of weight vector, while keeping the closest points to
the hyperplane with a score 4-1

m Multiclass SVM

2 Each label has a different weight vector (like one-vs-all)
0 Maximize multiclass margin

2 Equivalently,

Minimize total norm of the weight vectors while making sure that
the true label scores at least 1 more than the second best one.

MultiClass CS446 Spring "17 27



Recall hard binary SVM

min LwT'w

Size of the weights.

2 Effectively, regularizer

w

s.t.Vi, ywlx; >1

s.t. wlx—wix>1 V(x;,¥i) € D,
ke {1:2: 7K}:k %yz:

The score for the true label is higher
than the score for any other label by 1

MultiClass CS446 Spring "17 28



Total slack. Effectively,

‘ Size of the weights. \ don’t allow too many
Effectively, regularizer examples to violate the

margin constraint

min % E Wi W
wl’W2’...’wK k

S.t. wl x — ng >1

:I-

The score for the true label is higher
than the score for any other label by 1

4

V(x’iayi) ED:
ke {1727 7K}7k7éyi:

Slack variables. Not all
examples need to
satisfy the margin

constraint.

MultiClass -

Slack variables can
only be positive




Total slack. Effectively,

‘ Size of the weights. \ don’t allow too many
Effectively, regularizer examples to violate the

, margin constraint

4 -
-

4

: 1 T
w3 zk: w, wg + C (Xi%ED&
s.t. wg;,x —wix>1-¢, V(x;,¥i) € D,
i \\\\ ke{lvzv"'vK}vk%Yi:
o N w
v Y

Slack variables. Not all
examples need to
satisfy the margin

constraint.

The score for the true label is higher
than the score for any other label by
1-»

TG R P P

Slack variables can

, only be positive
MultiClass cosFFuopTrmg—1/ 30




m Generalizes binary SVM algorithm

2 If we have only two classes, this reduces to the binary (up to
scale)

m Comes with similar generalization guarantees as the
binary SVM

m Can be trained using different optimization methods

2 Stochastic sub-gradient descent can be generalized
= Try as exercise

MultiClass CS446 Spring "17 31



MultiClass

Training:
0 Optimize the “global” SVM objective

Prediction:
0 Winner takes all
argmax; W;'x

With K labels and inputs in 1", we have nK weights in all
0 Same as one-vs-all

Why does it work?
0 Why is this the “right” definition of multiclass margin?

A theoretical justification, along with extensions to other algorithms
beyond SVM is given by “Constraint Classification”

0 Applies also to multi-label problems, ranking problems, etc.

0 [Dav Zimak; with D. Roth and S. Har-Peled]

CS446 Spring "17
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MultiClass

The examples we give the learner are pairs (x,y), y € {1,...k}

The “black box learner” (1 vs. all) we described might be thought of as
a function of x only but, actually, we made use of the labels y

How is y being used?

1y decides what to do with the example x; that is, which of the k classifiers
should take the example as a positive example (making it a negative to all
the others).

How do we predict?
O Let: f (x) =w," - x
0 Then, we predict using: y" =argmax,_;  f (x)

Equivalently, we can say that we predict as follows:

) Predict vy iff
0 Vy €{l,.khy—-=y (wS-w,")-x>0 (*¥)
So far, we did not say how we learn the k weight vectors w, (y = 1,...k)

21 Can we train in a way that better fits the way we predict?
1 What does it mean?

Is it better in any well defined way?
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We showed: if pairs of labels are separable (a reasonable assumption) than in
some higher dimensional space, the problem is linearly separable.

e’ m  We are learning k n-dimensional weight vectors, so we can concatenate

%o the k weight vectors into Notice: This is just a representational

° .. ®eo w= (w;, W,,...w,) € | trick. We did not say how to learn the
o weight vectors.

m Key Construction: (Kesler Construction; Zimak’s Constraint Classification)

1 We will represent each example (x,y), as an nk-dimensional vector, x,, with x
embedded in the y-th part of it (y=1,2,...k) and the other coordinates are 0.

N E.g., X =(0x,0,0) € R (here k=4, y=2)

m Now we can understand the n-dimensional decision rule:

w  Predicty iff Vy €{l,.kLy—=y  (w-w,")-x>0 (*¥)
Equivalently, in the nk-dimensional space.
Predict vy iff Vy €{1,.kly—=y w'-(x,-x,)=w"-x, >0

m  Conclusion: The set (x,,,, +) = (x, — X, +) is linearly separable from the

set (-x,,, - ) using the linear separator w € Rkn,
1 We solved the voroni diagram challenge.
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MultiClass

® Training:

2 [We first explain via Kesler’s construction; then show we
don’t need it]

2 Given a data set {(x,y)}, (m examples) with x € R", y € {1,2,...k}
create a binary classification task (in Rk):
(X, - Xp» ), (X, =%, =), forally’ ==y (2m(k-1) examples)
Here x, € R

2 Use your favorite linear learning algorithm to train a binary
classifier.

w Prediction:

2 Given an nk dimensional weight vector w and a new example
. T
X, predict: argmax, W' X,

CS446 Spring "17 35



If (x,i) was a given n-
dimensional example (that
m Transform Examples C is, x has is labeled i, then

X, V j=1,..K, jo=1, are
positive examples in the

2>1 © nk-dimensional space. —x

253 ‘ Q0 % ® @ | are negative examples. :
@

2>4

= (0,x,0,0) € Rkd
X; = (0,0,0,x) € RKd
Xij - Xi - XJ - (O,X,O,'X)

W = (wy,W,,W,,W,) € Rk

MultiClass CS446 Spring "17 36



Wy =argmax

Jw,xeR

i=(r,b,g,v) Wi°X

= Find w,w,w

gW, € R such that -
0 WX > WX

WX > WX

g

O WX > WX

y

MultiClass CS446 Spring '17



MultiClass

Let W = (wr,wb,wg,wy) e R
Let O", be the n-dim zero vector

x BV 7% X VA4
W,.X > Wp.X & W.(x,-x,07,0") >0 < w.(-x,x,0",0") <0
WX > WX < w.(x,0",-x,0") > 0 < w.(-x,0",x,0") < 0

WX > W, X w.(x,0",0",-x) >0 < w.(-x,0",0",x) <0

- J - J
Y Y

—= .

CS446 Spring "17
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Let
O W=(Wg, ..., W) eRx..xR=R"
Q Xij = (O(i-l)n’ X, O(k-i)n) — (O(J"l)n’ —X, O(k-j)n) c R

m Given (x,y) e R x{1,...,k}
2 Forallj=y (all other labels)

* Add to P(x,y), (X 1)
* Add to P(xy), (X, -1)

m Pf(x,y) has k-1 positive examples (e R)
m P(x,y) has k-1 negative examples (e Rv)

MultiClass CS446 Spring '17




Given (Xq, Yq), - (Xy Yn) € R X {1,...,k}
Create
o Pr=u Pix,y:)
0 P =uUPix,y)
® Findw = (wy, ..., w,) € R", such that
2 W.Xseparates P" from P-
m One can use any algorithm in this space: Perceptron, Winnow, SVM, etc.

m To understand how to update the weight vector in the n-dimensional space,
we note that

o ©O

N wh - x,, >0 (in the nk-dimensional space)
W is equivalent to:
N (w,"=w, ") - x>0 (in the n-dimensional space)
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MultiClass

A perceptron update rule applied in the nk-dimensional space due to a
mistake in w'-x; >0

Or, equivalently to (w;"—w;") - x > 0 (in the n-dimensional space)
Implies the following update:

Given example (x,i) (example x € R", labeled i)

2 V(i) =10k 0 o= (***)
a9 1f (w'-w;") - x< 0 (mistaken prediction; equivalent tow" - x; <0)
0w, € w; +x (promotion) and w; < w; —x (demotion)

Note that this is a generalization of balanced Winnow rule.

Note that we promote w; and demote k-1 weight vectors w;
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The general scheme suggests:
Given example (x,i) (example x € R", labeled i)

O V(i) =1k 0 o= (***)
a9 1f (wi'-w;") - x< 0 (mistaken prediction; equivalent tow" - x; <0)
0 w; € w, +x (promotion) and w; € w; — x (demotion)

= Promote w; and demote k-1 weight vectors w;
w A conservative update: (SNoW and LBJava’s implementation):

21 In case of a mistake: only the weights corresponding to the target node i and
that closest node j are updated.

2 Let: j* = argmax.; ij- X (highest activation among competing labels)
2 0f (wT=wpuT) - x< 0 (mistaken prediction)

0w, € w; +x (promotion) and w: € wi. — x (demotion)

-1 Other weight vectors are not being updated.
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From the full dataset,
construct three binary
classifiers, one for each class

—
o) O
o) [
080 OOO 000
o 00 oO 00
O O
™[>
Wbblllijeexln (L)thgr w,, X >0 for Wyl X > O for
P orangeinputs black inputs

Notation: Score Winner Take All will predict the right answer.
for blue label [ Only the correct label will have a positive score
MultiClass CS446 Spring "17 43




o
e \°° Red points are not separable with a single
© binary classifier
¢ %o The decompositiors not expressive enough

o ® o o
©5° \eoo °5° ooo0
o0\ © ° e® O
0° o ° o°o ®
O Op O Op
WblueTX >0 WorgTX >0 WblackTX >0 alels
for blue for orange for black
Inputs Inputs Inputs
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m Easy to learn
1 Use any binary classifier learning algorithm

m Potential Problems
1 Calibration issues

= We are comparing scores produced by K classifiers trained independently.
No reason for the scores to be in the same numerical range!

1 Train vs. Train
* Does not account for how the final predictor will be used
= Does not optimize any globalmeasure of correctness

2 Yet, works fairly well

= In most cases, especially in high dimensional problems (everything is
already linearly separable).
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[ Create K classifiers wy, w,, ..., Wy .
[ Predict with WTA: argmax, W.'X

1 But, train differently:

= Forexamples with label i, wavant
w;™x >w;x for all j

= Training:For each training example e :
N Wi f‘% @:%0 ® FD:)

ifw
N o —e (promote) —: |earning rate
N —o (demote)
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MultiClass

©)
@)
© ©)

The hypothesis learned above is more expressive than when the OvA
assumption is used.

Any linear learning algorithm can be used, and algorithmic-specific
properties are maintained (e.g., attribute efficiency if using winnow.)

E.g., the multiclass support vector machine can be implemented by
learning a hyperplane to separate P(S) with maximal margin.

As a byproduct of the linear separability observation, we get a natural
notion of a margin in the multi-class case, inherited from the binary
separability in the nk-dimensional space.

1 Given example x; € R™, margin(x
1 Consequently, given x € R", labeled i
margin(x,w) = minj (w"-w;") - x

w) =min_w'- x.
|

i J j
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The margin of a hyperplane for a dataset is the
distance between the hyperplane and the data point

nearest to it. .
A
' .
‘. N

- - _ A “-‘ 'l' +-|.!-+
o " \ ++

— - “ N\
- " » “\ ‘ " . .

- \ ~ Margin with respect to this hyperplane

\ ‘\\
A}
)
A\
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MultiClass

Defined as the score difference between the highest

scoring label and the second one

Multiclass Margin

M Blue

Score for B Red
a label
=W 0 X “ Green
M Black

Labels
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The scheme presented can be generalized to provide a uniform view
for multiple types of problems: multi-class, multi-label, category-
ranking

Reduces learning to a singlebinary learning task
Captures theoretical properties of binary algorithm
Experimentally verified

Naturally extends Perceptron, SVM, etc...

L 0 A AcorGtraintfcl&sRficatich & A Yy OS A ieprégsénthg
labels as a set afonstraintsor preferenceamong output labels.

MultiClass CS446 Spring '17
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Multiclass
2 (x, A) = (x, (A>B, A>C, A>D))
m  Multilabel
2 (x, (A, B)) = (x, ( (A>C, A>D, B>C, B>D) )

w Label Ranking
2 (x, (5>4>3>2>1)) = (x, ((5>4, 4>3, 3>2,2>1))

® Inall cases, we have examples (x,y) with y € §
m  Where S : partial order over class labels {1,...,k}
0 defines “preferencé relation ( > ) for class labeling

m Consequently, the Constraint Classifier is: h: X—> §

2 h(x) is a partial order

2 h(x) is consistentwith y if (i<j) € y = (i<j) €h(x)

MultiClass CS446 Spring '17

The unified formulation is clear from the following examples:

Just like in the multiclass we
learn one w; € R" for each
label, the same is done for
multi-label and ranking. The
weight vectors are updated
according with the
requirements fromy € S,

(Consult the Perceptron in Kesler
construction slide)
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Properties of Construction @maket. al 2002, 2003)

Can learn anyargmax v..x function (even when i isn’t linearly separable
from the union of the others)
Can use anyalgorithm to find linear separation
Perceptron Algorithm
ultraconservativenline algorithm{Crammer, Singer 2001]
Winnow Algorithm
multiclasswinnow[ Masterharm 2000 ]
Defines a multiclass margin
by binary margin in Rk
multiclass SVM [Crammer, Singer 2001]

MultiClass CS446 Spring "17
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w Linear Hypothesis space:
2 h(x) = argsort v..x
= v, x el
= argsort returns permutationof {1,...,k}

m CC margin-based bound

2
err,(h) <o z R2 —1n(9)

/4

m - number of examples
R - max, |||
0 - confidence
C - average # constraints
MultiClass CS446 Spring '17
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w Linear Hypothesis space:
2 h(x) = argsort v,.x
= v, x el
= argsort returns permutationof {1,...,k}

m CCVC-based bound

err,(h) <err(Sh) + 6{\/

MultiClass

pos

kdlog(mk/d) —Ino

m - number of examples

d - dimension of input space
delta - confidence

k - number of classes

CS446 Spring "17

Performance: even though
this is the right thing to do,
and differences can be
observed in low dimensional
cases, in high dimensional
cases, the impact is not
always significant.

U
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m Ranking
1 category ranking (over classes)
1 ordinal regression (over examples)

= Multilabel
1 Xis both red and blue

m  Complex relationships
1 Xis more red than blue, but not

m  Millions of classes
1 sequence labeling (e.g. POS tagging)

1 The same algorithms can be applied to these problems, namely, to Structured
Prediction

1 This observation is the starting point for CS546.

MultiClass CS446 Spring’17 55



m Sequential Prediction (y € {1,...,K}")
S®3d th{ GF3I3TAYy3IT 6Wébxbb! 0QU

“This is a sentence.” =DV DN
e.g. phrase identification
Many labels: K' for length L sentence
w Structured Output Prediction (y € {1,...,K}*))
e.g. parse tree, muHevel phrase identification
e.g. sequential prediction
Constrained by
domain, problem, data, background knowledge, etc...
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m  Foreachverbin asentence
1. Identify all constituents that fill a semantic role

2. Determine their roles
Core Arguments, e.g., Agent, Patient or Instrument
Their adjuncts, e.g., Locative, Temporal or Manner

AO : leaver A2 : benefactor
| left my pearls to my daughter-in-law in my will.
Al: thing left AM-LOC
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Just like in the multiclass case we can
think about local vs. global predictions.

Local: each component learned
separately, w/o thinking about other
components.

Global: learn to predicting the whole
structure.

Algorithm: essentially the same as CC

AO - Al A2
| left my pearls to my daughter-in-law in my will.

= Many possible valid outputs
= Many possible invalidoutputs

= Typically, one correctoutput (per input)
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